A Temporal Channel for Information in Sparse Sensory Coding

Nitin Gupta1,2,* and Mark Stopfer1,*

1National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA

Summary

Background: Sparse codes are found in nearly every sensory system, but the role of spike timing in sparse sensory coding is unclear. Here, we use the olfactory system of awake locusts to test whether the timing of spikes in Kenyon cells, a population of neurons that responds sparsely to odors, carries sensory information to and influences the responses of follower neurons. Results: We characterized two major classes of direct followers of Kenyon cells. With paired intracellular and field potential recordings made during odor presentations, we found that these followers contain information about odor identity in the temporal patterns of their spikes rather than in the spike rate, the spike phase, or the identities of the responsive neurons. Subtly manipulating the relative timing of Kenyon cell spikes with temporally and spatially structured microstimulation reliably altered the response patterns of the followers. Conclusions: Our results show that even remarkably sparse spiking responses can provide information through stimulus-specific variations in timing on the order of tens to hundreds of milliseconds and that these variations can determine the responses of downstream neurons. These results establish the importance of spike timing in a sparse sensory code.

Introduction

Brain circuits encode sensory information into a variety of neural representations. These representations range from dense, time-varying patterns of intense spiking in overlapping sets of neurons to sparse spikes in just a few selective neurons. Sparse codes are used by nearly all sensory systems [1], including vision [2] (but see [3]), audition [4], somatosensation [5], and olfaction [6]. In dense spiking codes, the precise timing of spikes has been shown to contain sensory information [7], but, despite the ubiquity of sparse codes in the brain, the role of timing in the relatively few spikes in sparse sensory codes is unknown. Here, we sought to answer the fundamental question of whether the timing of sparsely firing neurons conveys sensory information to their follower neurons.

A remarkable example of sparse sensory coding is found in the mushroom body, an area of the insect brain investigated for roles in olfactory coding and associative learning [6–11]. Kenyon cells (KCs), the intrinsic neurons of the mushroom body, receive olfactory input directly from projection neurons (PNs) of the antennal lobe (analogous to mitral cells of the olfactory bulb) (Figure 1A). Whereas any given PN shows abundant spontaneous activity and responds to many odors with dense patterns of spikes, KCs are nearly silent at rest and respond selectively to odors, with very few spikes [12]. These highly sparse responses are thought to be advantageous [1] for distinguishing odors and learning associations [13]. Although these rare spikes may occur with different timing relative to the odor presentation in different KCs [14], it is unclear whether this timing is used downstream [13]; information in sparse sensory responses is thought to be coded by the identities of the responding neurons. In motor areas, the timing of sparse firing may be used to generate timed motor sequences [15], but in sensory areas, sparse coding is viewed as an outcome of rather than a substrate for temporal processing [12, 13]. For example, piriform cortex neurons, which exhibit sparse responses [5] and are morphologically analogous to KCs [16], are thought not to use temporal coding [17], even though their responses are driven by a temporal code in the olfactory bulb.

We tested whether the timing of sparse spikes in KCs carries information to and affects the responses of downstream neurons. We performed our experiments in the locust olfactory system, which has been characterized in great detail in terms of anatomy [18, 19], physiology [12, 20], and behavior [21, 22]. By using the types of odors that locusts can discriminate [22], we observed responses of KCs with extracellular recordings and found that the sparse spikes in KCs occur with odor-specific timing. We then characterized the followers of KCs in the mushroom body by using intracellular dye labeling, mass fills, and immunostaining. With intracellular recordings, we found that these followers contain information about odor identity in the temporal patterns of their spikes. Finally, by using electrical microstimulation of subsets of KCs, we found that the spike patterns in the followers are strongly affected by subtle variations in the absolute or the relative timing of KC spikes. Taken together, our results establish that even the remarkably sparse spiking responses of KCs provide information through odor-specific variations in timing on the order of tens to hundreds of milliseconds and that these variations determine responses downstream.

Results

Odor-Specific Timing in KC Responses

Extracellular recordings from KCs in awake locusts confirmed very low firing rates (0.05 Hz background, 1.21 Hz during odor responses, n = 404 cell-odor combinations). Notably, the timing of odor-elicited spikes relative to odor onset could vary, sometimes by hundreds of milliseconds, with the identity of the odor (Figure 1B1). Further, different KCs could respond to the same odor with different timing (Figure 1B2). These results raise the possibility that timing carries sensory information in the sparse spiking of KCs to downstream neurons.

Followers of KCs in the β Lobe of the Mushroom Body

To understand information transfer downstream of KCs, we first needed to better characterize the projection patterns and odor-elicited responses of follower neurons. KCs project to lobes of the mushroom body, where they synapse onto several types of cells, including β lobe neurons (bLNs) [9, 23–25]. Our intracellular fills revealed several distinct classes of bLNs (Figures S1 and S2 available online). Our analysis focused on the two classes, “bLN1” and “bLN2” (Figure 1C),
identified most frequently in our survey (19% and 60%, respectively, of 83 intracellular fills). Immunostains for γ-aminobutyric acid (GABA) were negative for bLN1, but the bLN2 population included both GABA-positive and GABA-negative neurons (Figure 1D). Our fills of bLN2 showed that it sends branches into the calyx of the mushroom body; whether these branches receive input from KCs or provide feedback [9, 25] is not clear. It is unlikely that bLN2s receive direct input from PNs because activity in bLN2 can be silenced completely by blocking activity in KCs [20].

Our mass fill stains identified at least one dozen bLN2s in each hemisphere (Figure S2). In contrast, several results suggest that there is only one bLN1 in each hemisphere. First, mass dye fills in five brain hemispheres showed only one bLN1 per hemisphere, even when large numbers of other bLNs were filled (Figure S2). Second, with intracellular staining experiments, we never filled in a hemisphere more than one bLN1, despite its large size; by contrast, we routinely found multiple bLN2s, either when we injected dye into multiple cells or on occasions when dye leaked from the electrode (an example is shown in Figure S4). Third, paired intracellular fills of bLN1 with two different dyes revealed the same neuron (Figure S3).

bLN2 was previously shown to receive direct input from KCs [24]. Our results suggest that bLN1 also receives direct input from KCs: bLN1s extended fine and highly branched, dendrite-like [20] neurites in the β lobe (see Figure 1C) and showed reliable, short-latency, excitatory postsynaptic potentials and increased spiking after brief stimulation of KCs (Figure 2A; also see Figure 5 below). Consistent with these results, paired recordings showed that activating the giant GABAergic neuron (GGN), which inhibits KCs [20, 26], inhibited bLN1 (Figure 2B). Together, these results established the bLNs as suitable targets for our analysis of KC spike timing.

Temporal Patterns of Responses in Followers of KCs Contain Odor Identity

To understand how the precise timing of KC spikes affects bLN responses, we asked how bLNs respond to odors. Confirming previous reports from unlabeled neurons in the β lobe [23, 27], we found both bLN1s and bLN2s fired spontaneously and responded to odors with vigorous bursts of spikes. These dense responses are consistent with the convergence of KCs onto the relatively large dendritic arbors of bLNs (Figures 1C and S2). In bLNs, the patterns of spikes elicited by odors often endured longer than the odor and contained alternating epochs of excitation and inhibition, each lasting hundreds of milliseconds (Figure 3A). We found that bLNs of all classes responded to nearly every odor we tested (response probability = 96.9%, n = 282 cell-odor combinations), so the identities of responsive bLNs could not provide enough information to specify the odor. However, different odors could elicit markedly different firing patterns from a given bLN (Figure 3A; see also Figure S4); thus, using standard statistical classification methods, we could use these temporal patterns to classify odor identity (see Experimental Procedures; Figure 3B).
Indeed, for both bLN1 and bLN2, within 500 ms of response onset, the single-neuron classification accuracy for a fixed set of six odors reached 60%–70%, significantly exceeding chance (chance level = 1/6 = 17%; bLN1: p = 5 × 10⁻⁵, n = 6; bLN2: p = 9 × 10⁻⁵, n = 9; two-tailed t test); response accuracy continued to improve as longer portions of the response were included in the analysis. Consistent with our response classification results, the odors we used are distinguishable by the animal; hexanol and octanol, which are among the most chemically similar odorants in our test panel, are readily discriminated by behaving locusts [22].

Control analysis using a sham response period of 2 s before the odor presentation yielded performance at chance level, regardless of the length of the response analyzed (Figure 3C). The initial ~500 ms of the response were most informative, but each point in time during the response also carried information about odor identity, as shown by a classification analysis performed on sequential bins made from the response period (Figure 3D; Experimental Procedures). Instantaneous classification accuracy was significantly above chance even 1 s after odor onset (bLN1: p = 0.035, n = 6; bLN2: p = 0.006, n = 9; two-tailed t test). We found that a given odorant could evoke different patterns of spiking in different bLNs of the same class in the same brain (Figure S4).

We also tested (see Experimental Procedures) how well odors could be identified given two other characteristics of the response: the mean spike rate [17] or spike phase, with respect to the simultaneously recorded oscillation cycle [28, 29]. Classification attempts using these features were significantly less successful than classification using temporal patterning (Figure 3E).

These results show that bLNs contain information about odor identity in temporally structured patterns of spikes. To test whether these response patterns are robust to variations in the number and duration of odor presentations, we measured responses of bLNs to a set of six odorants presented in different stimulus patterns (Figure 4A). The responses of bLNs to an odor varied with the presentation pattern of the odor but retained similarities across the presentation patterns. Thus, a classifier trained on responses evoked by odors presented in one pattern could perform well above chance given responses to other presentation patterns (Figure 4B), even when the response magnitude was normalized (Figure 4C).

Temporal Patterns in KC Responses Determine Temporal Patterns in bLN Responses

To determine whether the precise timing of the sparse spikes in KCs carries useful information, we tested whether this timing is actually used by the follower neurons. Our results show that bLNs contain information about odor identity in the temporal patterns of their spikes. The precise timing of spikes in KCs could potentially shape the information-rich temporal patterns of spikes in bLNs, which would establish the importance of timing in the sparse responses of KCs. Yet, it is also possible that the fine details of timing of KC spikes are ignored by bLNs as they integrate their input [13]; the odor-evoked temporal patterns in bLNs could instead originate elsewhere, such as with local interactions [27], for example, between GABA-positive and GABA-negative neurons in the β lobe (Figure 1D).

To test for causal links between the timings of responses in KCs and bLNs, we manipulated the absolute or the relative timing of spikes in KCs while making intracellular recordings from bLNs (Figure 5A). To generate sparse [30] and distributed responses in KCs, we delivered low-amplitude current through multiple microwires targeting the KC soma layer in the calyx. Our brief (50 ms, 150 ms, or 300 ms) trains of high-frequency (100 Hz or 200 Hz) electrical stimulation likely elicited in each responding KC only one spike or a few spikes because KCs show strong spike-frequency adaptation, long-lasting hyperpolarizations following spikes [19], and firing rates that saturate at 10–20 spikes/s in response to current injections [31, 32] (see Figure S5). Further, bLNs driven by electrically activated KCs fired at moderate rates matching those evoked by odors (Figure 5B). Neurons of class bLN2 extend branches into the calyx region of the mushroom body (see Figure 1C), raising the potential concern that electrical stimulation may have directly activated these cells rather than, as intended, driven them indirectly via the KCs. However, direct activation
is unlikely for several reasons. First, we positioned the stimulating electrodes in the KC soma layer, which exclusively contains KCs and is separate from the neuropil region of the calyx [19]. Second, we placed both stimulation anode and cathode in the somata layer to contain the current path within that layer. Third, bLN1s, which do not project to the calyx, responded to electrical stimulation similarly, and as strongly, as bLN2s (Figure 5C), showing that our results do not depend on direct stimulation of bLNs. These results show that our electrical stimulation paradigm evoked activity in KCs and then in bLNs, well within the spiking range normally evoked by odors.

We first varied the absolute timing of KC stimulation while keeping net stimulation constant by delivering two different stimulation patterns through all wires: four epochs of 150 ms stimulation with 100 ms gaps and two epochs of 300 ms stimulation with a 200 ms gap. When KCs were driven this way, bLNs responded reliably with firing patterns that could be used to classify the KC stimulation pattern with ~80% accuracy (Figures 5C and 5D). We next tested whether bLNs could differentiate a 100 ms epoch of KC stimulation from two 50 ms epochs separated by brief delays ranging from 10 ms to 200 ms. Indeed, the responses elicited in bLNs by these different patterns could be differentiated with accuracy approaching 100% for delays of 100 ms or longer, ~80% for delays of 25 ms, and ~65% for delays of 10 ms (Figures 5E and 5F). These results show bLNs are sensitive to changes in KC spike timing on a scale of tens of milliseconds.

Next, we varied the order in which different KCs were stimulated, keeping the absolute stimulation times and net stimulation unchanged. Using a switching circuit directing the same electrical stimulus sequentially to four pairs of wires, we activated four sets of KCs in different orders, with 50 ms pulses separated by 100 ms delays between sets (Figures 6A and 6B1). We found that responses evoked in bLNs depended on the sequence used to stimulate KCs and could be used to discriminate among four stimulation sequences with >95% accuracy (Figure 6B2). Discrimination performance remained well above chance, even when the algorithm was given shorter or longer response durations for classification. The different KC stimulation sequences affected not only the response patterns of bLNs but also their firing rates: classification using the total number of evoked spikes performed less well than classification using patterns but still better than chance (accuracy = 57% compared to 25% chance, p = 0.003 for 500 ms interval; accuracy = 48%, p = 0.005 for 1 s interval). We then sought to mimic the smallest realistic change in the relative timing of KCs, which respond to odors with at most one spike per ~50 ms oscillation cycle [12]. We used two sequences of KC stimulation: first, we activated four sites sequentially for 50 ms each with no delay between sites, and, second, we used the same first and fourth site but interchanged the order of the second and the third sites (Figure 6C1). We found even this subtle change could be decoded from bLN response patterns with >80% accuracy (Figure 6C2); classification accuracy using total number of spikes in a 500 ms period was 66% compared to 50% chance, and p = 0.036. These results show that minimal variations, on a scale of tens of milliseconds, in the timing of very sparse spikes strongly influence the responses of follower neurons and thus establish the importance of timing in a sparse sensory code.
Because the experiments using electrical stimulation were performed in the absence of odors (and odor-evoked oscillations), the observed sensitivity of bLNs to KC spike timing did not depend on oscillatory dynamics. The sensitivity of bLNs to precise timing may emerge because different KCs make synapses of different strengths or at different locations [33] on the dendritic trees of bLNs. For instance, the black stimulation site in Figure 6 B1 and the light blue stimulation site in Figure 7 A appeared to elicit stronger responses than other sites. Also, a close examination of bLN responses suggests activating KCs could evoke inhibition, in addition to excitation, in bLNs. The inhibition evoked by one set of KCs could mask the excitation subsequently evoked by another (Figure 7 A), making bLN responses sensitive to the order in which KCs are activated. One source of this inhibition may be intrinsic to bLNs: directly injecting positive current into a bLN could cause a brief subsequent reduction in its spontaneous firing (Figure 7B), suggesting a form of fatigue. In some bLNs, however, inhibition driven by the activation of KCs could be observed in the apparent absence of preceding excitation, showing that some inhibition in bLNs arises through circuit interactions (Figure 7 C). The second example in Figure 7 C shows that the inhibition could depend on the identity of stimulated KCs, consistent with the idea that the inhibition in bLNs arises partly through circuit interactions and not exclusively through mechanisms intrinsic to bLNs.

Discussion

Representations of sensory stimuli can change as they move from one population of neurons in the brain to the next. In deeper layers, stimuli are often encoded by relatively few spikes in selective neurons [1, 13]. Information about sensory stimuli has been thought to be carried by the identities of these sparsely responding neurons [13]. However, our results show that the timing of the sparse KC responses also carries olfactory information and contributes to the information content of dense codes in follower neurons. Thus, stimulus-specific variations in spike timing provide a useful channel to increase the coding capacity of neurons, while retaining the benefits of sparseness.

The presence of information about odors in the timing of spikes early in the olfactory pathway has been shown in both vertebrates and insects [17, 34–38]. Studies of the insect olfactory system have shown that odors elicit patterns of spikes that vary with the odor in receptor neurons and their followers, the PNs [39, 40]. Our results show that neurons further along in the olfactory pathway, the KCs and the bLNs, also contain information about odors in the timing of their spikes. Recently, the neural targets of PNs in the lateral horn were also shown to respond with odor-specific temporal patterns of spikes [41]. Because our results showed that both the firing rates and the timing of spikes in bLNs are shaped by the timing of KCs, any mechanism reading the output of bLNs will also be
sensitive to the timing of the sparse responses of KCs. Together, these results suggest that temporal coding is used throughout the olfactory system. This view is different from one suggested by a study of the mouse olfactory system [17], which argued that a relative time code in the olfactory bulb is converted into a rate code in piriform cortex neurons (which are analogous to KCs). However, other recent reports suggest the existence of odor-specific timing in this region [42]. Examining the responses of the follower neurons of piriform cortex neurons may be useful in determining whether piriform cortex neurons use temporal codes for odors.

Many factors contribute to the generation of temporal structure in the responses of olfactory neurons early in the olfactory pathway, including the physical kinetics of odor delivery and the biochemical chain of events surrounding olfactory transduction [46]. Yet, these factors do not fully explain the temporal patterning observed in bLNs. Indeed, a given odorant could generate nearly identical responses in a given bLN over repeated presentations but very different response patterns in different bLNs (see responses to 10% hexanol in Figure 3A; also see Figure S4). The temporal patterns of response in bLNs, therefore, reflect neuron-specific dynamics, determined by the response patterns of their presynaptic KCs (Figure 6), possibly with contributions from additional mechanisms within and around the bLNs or lateral connections among KC axons [43]. Our results suggest that both intrinsic and network inhibition in bLNs may help to make these neurons sensitive to the timing of KC spikes (Figure 7). These results also suggest a new functional role for the lateral inhibition observed among bLNs [27].

Although the responses of bLNs clearly contain information about odors, the precise roles these neurons play in olfactory behaviors remain to be determined. The response patterns in bLNs may be helpful for discriminating odors; these patterns were most informative about odor identity in the first few hundred milliseconds of odor presentation (Figure 3), consistent with the fast odor discrimination observed in behavioral experiments [44]. The response patterns, however, continued to provide information about odor identity for durations matching or exceeding the duration of the stimulus. This additional information may become useful as the difficulty of the behavioral task increases [45, 46] or when accuracy is more rewarding than speed. It is also possible that the response patterns of bLNs are not needed for discriminating odors per se, but rather for other processes such as encoding memories in the mushroom body, a process that could occur relatively slowly: an insect can learn to associate an odor with a reward, even when the two stimuli are separated by several seconds [47]. If associative olfactory memories involve spike-time-dependent plasticity (STDP) at KC-bLN synapses [27], the odor-specific temporal patterns in KCs and bLNs will...
determine which subset of the synapses formed by odor-responsive KCs undergoes plasticity.

Experimental Procedures

Animals and Preparation
All experiments were performed on restrained, unanesthetized locusts, *Schistocerca americana*, raised in our crowded colony (hundreds of animals per cage), with 12 hr-12 hr (light-dark) cycle. Two-month-old animals (n = 81) of either sex were used in the experiments. Animals were immobilized, and the brains were exposed, desheathed, and superfused with locust saline at room temperature as described previously [41].

Odor Stimulation
Odors were delivered as described previously [41]. Briefly, 20 ml of odorant solutions were placed in 60 ml glass bottles at dilutions of 10%, 1%, or 0.1% v/v in mineral oil. Odorants used in our study were as follows: grass volatiles hexanol (hex), octanol (oct), hexanal (hxa), and 1-octen-3-ol (o3l); synthetic compounds cyclohexanone (chx) and ethyl isovalerate (eiv); and nongrass plant volatiles geraniol (ger), citral (cit), and methyl jasmonate (mja).

Sharp Intracellular Recordings
Intracellular recordings were made from bLN dendrites in the β lobe [24] by using sharp glass micropipettes (60–200 MΩ, filled with 0.5 M potassium acetate or an intracellular dye solution). Paired intracellular recordings of bLNs and GGN were obtained by targeting a bLN in the β lobe and GGN near the pedunculus of the mushroom body with sharp electrodes. The signals were amplified in bridge mode (Axoclamp-2B; Molecular Devices), further amplified with a DC amplifier (BrownLee Precision), and sampled at 15 kHz or 20 kHz (LabView software; USB-6353 DAQ card; National Instruments).

Intracellular Staining
The intracellular dye solution consisted of 1% Neurobiotin (Vector Labs) in 0.2 M LiCl or 5% Lucifer Yellow (Invitrogen) filled at the electrode’s tip with 0.2 M LiCl in the shaft. After recording, to identify bLN morphology, we sometimes injected dyes into the neurons iontophoretically by using 0.2–2 nA current pulses at 3 Hz for up to 20 min. Neurons belonging to bLN1 class could also be readily identified physiologically; compared to other classes of bLNs, they exhibited relatively high background firing rates, low input resistance, and few subthreshold excitatory postsynaptic potentials.

Histology
After experiments, brains were dissected out, fixed in 4% paraformaldehyde, and prepared for histology as described previously [41]. Imaging was performed using a confocal microscope (Zeiss LSM 510 or LSM 780), with a 10× (0.3 NA) or 20× (0.8 NA) objective. Images were analyzed using public domain software ImageJ (NIH). Images showing neuron morphology are maximum-intensity projections through confocal stacks, and they were enhanced for clarity by adjusting brightness, contrast, and gamma and by removing noise patches from the brain surface. Images showing GABA immunostains are single sections from the confocal stack, and they were enhanced for clarity by adjusting brightness, contrast, and gamma and by removing noise patches from the brain surface.

Immunostaining
Anti-GABA immunostaining was performed on whole locust brains containing dye-filled neurons as described previously [41], using rabbit anti-GABA primary antibody (Sigma, A2052) and Alexa Fluor 488 or Alexa Fluor 633 conjugated anti-rabbit IgG secondary antibody (Invitrogen, A-11008 or A-21070). Intracellular staining with Lucifer Yellow was enhanced by antibody staining using anti-Lucifer Yellow primary (Invitrogen, A-5750) and Alexa Fluor 488 conjugated secondary antibody (Invitrogen, A-11008).

Multunit Recordings
Extracellular multunit recordings were made from KCs using custom twisted-wire electrodes [12] containing up to eight wires. The signals were preamplified, amplified, and filtered using a 16-channel amplifier (A-M Systems). Data were digitally sampled at 20 kHz. KC spike sorting was performed offline using a custom MATLAB (MathWorks) program based on the Spike-O-Matic algorithm [48]. Spike sorting was conservative: we...
analyzed only those clusters that were unambiguously defined and well separated from one another throughout the experiment.

Local Field Potential Recordings
Local field potential (LFP) was recorded in the calyx of the mushroom body using either a blunt glass capillary electrode (5–15 MΩ, filled with saline) or one of the channels of the extracellular twisted-wire electrodes. The LFP was used to estimate the phases of the spikes of bLNs.

Electrical Microstimulation
Because the soma layer dorsal to the mushroom body calyx includes only KC somata [19], we could readily and exclusively target KCs for electrical stimulation. Brief trains of optically isolated current stimulation (IsoStim01-D, NPI Electronic) were delivered at 100 Hz or 200 Hz. We used biphasic stimulation pulses of small amplitude, in either constant current mode (1–4 μA) or constant voltage mode (0.5–5 V, 100–200 kΩ electrode resistance), with 1–4 ms pulse width. The parameters of stimulation were adjusted for each animal to obtain responses in bLNs resembling those elicited by odors but were kept unchanged within an experiment. The positive and the negative terminals of the stimulator were connected to three or four channels each of an eight-channel twisted-wire electrode, splayed among the KC somata (covering 50%–60% width of the calyx) to achieve distributed activation of KCs. The timing of stimulation was controlled by LabView (National Instruments) software. Stimuli were presented in randomized orders.

Data Analysis
All analyses were performed using custom programs in MATLAB. All data in the manuscript are reported as mean ± SEM. Statistical tests were performed using two-tailed tests or ANOVA. The samples compared were of equal sizes and did not show significant deviation from normality (Anderson-Darling test). Sample sizes were 6–9 for all tests; significant p values were well below 0.05. Phases of spikes with respect to the LFP were estimated by measuring their positions relative to the previous peak in the simultaneously recorded LFP. The sequence of activation was controlled by LabView (National Instruments) software. Stimuli were presented in randomized orders.

Stimulation-Triggered Averages
To check whether bLN1 receives direct excitatory input from KCs, we delivered a series (several hundred per cell) of very brief (150–300 ms) pulses of extracellular stimulation to KCs, while monitoring the membrane potential in bLN1 dendrites by sharp-electrode intracellular recording. We then constructed the stimulus-triggered average for each cell to detect any excitatory or inhibitory postsynaptic potentials in bLN1 following stimulation pulses. Note that the observed latency between the stimulus delivery and the onset of the excitatory postsynaptic potential in bLN1 includes the delay in generation of KC spikes after stimulation, the delay in the conduction of spike from KC soma in the calyx to neurites in the mushroom body, and the delay at the synapse.

Spatially Ordered Microstimulation
Spatially ordered stimulation of KCs was achieved by routing isolated stimulation to four different sites using four Magnecraft W117DIP-25 reed double pole single throw relays (Newark Electronics). To achieve fine control over the selection of stimulation sites, we used two eight-channel twisted-wire electrodes held by separate micromanipulators (the intracellular recording electrode was held by a third micromanipulator). Of the eight channels in each bundle, four were selected (quality assessed by their ability to record LFP signals) and connected to the positive or negative terminals of different relays. The sequence of activation was controlled by LabView (National Instruments) software. Stimuli were presented in randomized orders.

Responsiveness of a neuron to an odor was determined by an automated algorithm, using previously published criteria for response amplitude and latency.

Figure 7. Inhibition Influences bLN Response Patterns
(A) In this representative example, the inhibition caused by stimulation of one set of KCs (light blue electrode) could diminish the excitatory responses normally evoked by other sets of KCs stimulated subsequently. Compare responses to the red electrode in the middle panel and the black electrode in the bottom panel with corresponding responses in the top panel. This masking phenomenon was clearly evident in five cells. (B) Brief, intracellular current pulse injections in bLNs can briefly inhibit subsequent spiking: **p = 0.002, n = 6 bLNs, two-tailed paired t test.** (C) Top: a bLN showing inhibition in absence of excitation following stimulation of KCs. Bottom: a bLN in which stimulation of one set of KCs (dark blue electrode) evoked inhibition (in absence of preceding excitation), whereas stimulation of other sets of KCs (red and light blue electrodes) evoked both excitation and inhibition. Peristimulus time histogram of spikes (binned every 50 ms) is shown on top; inhibition in absence of excitation was observed in four cells. Vertical scale bar represents 20 mV.

Peristimulus time histograms of spikes (B) were segmented into intervals of 100 ms each, and the mean number of spikes in each interval was calculated. Average number of spikes (C) was determined by subtracting the number of spikes in the interval before each pulse from the number of spikes in the interval after each pulse. The relative effect of a stimulus on the response amplitude was estimated by comparing the average number of spikes in the 7 ms interval following the pulse to the average number of spikes in the 7 ms interval before the pulse. The significance of the differences between pre- and post-pulse spike counts was estimated by a paired t test with a p value of 0.05. Significant inhibition in the absence of excitation was observed in four cells.
Temporal Channel for Information in Sparse Coding

reliability [12]. To satisfy the amplitude criterion, the neuron’s instantaneous firing rate (peristimulus timing histogram computed using 20 ms bins and smoothed with a Gaussian of 60 ms SD) during the response period (2 s from odor onset) had to exceed more than 3.5 SD of the baseline firing rate (computed for 2 s before odor presentation). To satisfy the reliability criterion, the neuron had to fire at least one spike during the 2 s response window in more than half of the trials. We validated these criteria by estimating the false positive rate: the fraction of cell-odor combinations that qualified as responsive in a sham response period (2 s before odor presentation) was small (2.3%).

Classification Analyses
Classification analyses were performed in individual neurons using a standard template-matching algorithm [41] with 2-fold nonstratified cross-validation. Briefly, responses of bLNs were represented by vectors of spikes binned in 100 ms windows (other bin sizes gave similar results; Figure 5B2) when using temporal patterns or by single bins containing the average spike rate or average spike phase (with respect to the simultaneously recorded LFP) when using these other features for classification (Figure 3E). The classifier first generated a template for each stimulus by calculating the centroid of the vectors from training trials (50% of all trials) and then classified the remaining (test) trials based on Euclidean distance to provide an accuracy estimate. Chance level is given by 1/x, where x is the number of odors or stimulation sequences to be classified (different for different figures). For 0 vector length, accuracy was, by definition, at chance. Control analyses using a sham response period (2 s before stimulus presentation) showed classification accuracy near chance level (Figure 3C). To test information content in different parts of the response, we used a variant of the above algorithm: the Euclidean distance was computed using the values in the individual bin at each time point (Figure 3D).

Supplemental Information
Supplemental information includes five figures and can be found with this article online at http://dx.doi.org/10.1016/j.cub.2014.08.021.

Author Contributions
N.G. and M.S. designed the experiments. N.G. performed the experiments and analyzed the data. N.G. and M.S. wrote the paper.

Acknowledgments
We thank members of the M.S. laboratory and Maxim Bazhenov for helpful discussions; George Dold and Bruce Pritchard for help with the current stimulation setup; and Kul Sun for her excellent animal care. Microscopy was performed at the Microscopy and Imaging Core (NICHD) with the kind assistance of Vincent Schram. This work was supported by an intramural grant from the NIH-NICHD to M.S.

Received: June 25, 2014
Revised: August 11, 2014
Accepted: August 13, 2014
Published: September 25, 2014

References